
TECHNICAL NOTES AND SHORT PAPERS 

On A Lower Bound For The Rank Of A 
Partitioned Square Matrix 

By Gene H. Golub 

It has been shown by Fan and Hoffman [1] that it is possible to find lower bounds 
for the rank of a square matrix that can be calculated in a simple fashion from the 
coefficients of the matrix. In this note, we shall extend their results to matrices 
which have been partitioned into blocks. 

Throughout this note, we shall use the following notation: 

r(A) = rank of A; 

tr(A) = trace of A; 

JAI = (faijj); 

Xj(A) are the eigenvalues of A, and 

p(A) = max fXj(A) 1. 
i 

Let A be an arbitrary n X n complex matrix partitioned as follows: 

A1,1 A1,2 . A.,. N 

A-(A2,1 A2,2 
. 

A2,NA 

ANj, AN,2 ... ANN! 

with Aij an ni X nj matrix so that the diagonal matrices are square. The diagonal 
elements of Amm are denoted as a(k), k = 1, * * , ni ; m = 1, 2, * * , N. 

Associated with each block A ij is a norm, 11 Aij 11, which has the usual properties 
[3], and which is compatible with a vector norm, i.e., 

11 Aijx 11 < 11 Aij 11-11 x 11 

In addition, we require that the matrix norm have the following property: 
If D is a diagonal matrix whose entries are equal to one in modulus, then 

1i DA 11 = 11 A 11. 

This property is satisfied, for example, by the spectral norm and those norms 
dependent only on the absolute value of the elements, e.g., the euclidean norm. 

In order to obtain a lower bound for r(A), it is necessary to obtain an upper 
bound for p(A). To this end, we have 

THEOREM 1: 

N 

p(A) < max ;11 Aj 1 
1_iN j= 1 
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Proof: 
Since Ax = p(A) x, 

n 

p(A) 1 xi 11 _ E 11 Aili xjI for i1, 2, **,N. 
j=1 

Thus if 11 X1 _ fl xi fl for all i, 

p(A) < E A1Ij < I max E |Aij II| 
n~l ||T x| 1_i?N j=l 

Theoremn 1 is a generalization of the Gerschgorin theorem and can also be derived 
from the generalization of the Gerschgorin Circle Theorem by Feingold and Varga 
[2]. 

THEOREM 2. For any partitioned matrix A, 

r(A') = JJ 

j=j 

(Whenever 0/0 occurs on the r.h.s., we agree to put 0/0 = 0.) 
Proof: 

Let 
n 

b(m) = Z JJAmMjl n = 1, 2, *-- N, 
j=l 

(in) i0km, 
akk pkm e 

and let 

C =EA 

where E is a diagonal matrix with 
e-itkem 

e(in) e= k fo b(m) id 
ekk =b(mn) 

fo 
,m)7 

-1 for b(m) =O 

(k = 1, ,n; m =1, ,N). 

Since det C 50 . r(C) =r(A). 
Now max1i<i< N j 1 Ci j = 1, so p(C) < 1 by Theorem 1. 
Since tr(C) is equal to the sum of the non-zero eigenvalues, and since p(C) < 

1, it follows that 

tr(C) ? r(C). 

It is obvious that the bound for r(A) depends very much upon the partitioning 
of the matrix A and the norm used. Indeed, it is not difficult to construct examples 
where if ni ? 1, then the bound for r(A) may be inferior to that when ni = 1 for 
all i. The question arises whether it is possible to choose partitionings and norms 
to maximize the lower bound for r(A). 

Space Technology Laboratories, Inc. 
One Space Park 
Redondo Beach, California 



188 DANIEL SHANKS 

1. KY FAN & A. J. HOFFMAN, "Lower bounds for the rank and location of the eigenvalues 
of a matrix," Contributions to the Solution of Systems of Linear Equations and the Determination 
of Eigenvalues, edited by Olga Taussky, Nat. Bur. Standards. Apple. Math. Ser., v. 39, 1954, 
p. 117-130. 

2. DAVID G. FEINGOLD & RICHARD S. VARGA, "Block diagonally dominant matrices and 
generalizations of the Gerschgorin Circle Theorem," Case Institute of Technology, Cleveland 
6, Ohio, Report No. 1062, 1962. 

3. A. S. HOUSEHOLDER, "The approximate solution of matrix problems," J. Assoc. Comput. 
Mach., V. 5, 1958, p. 205-243. 

Supplementary Data and Remarks Concerning a 
Hardy-Littlewood Conjecture 

By Daniel Shanks 

Let Pa(N) be the number of primes of the form n2 + a for 1 ? n < N, 
and let #ra(N) be the number of primes ? N for which -a is a quadratic nonresi- 
due. In [1] we discussed a conjecture of Hardy and Littlewood to the effect that 

(1) Pa(N) '-' ha 

Where the constant ha is given by 

(2) ha = 
I 

1 - 
1 

) 

the product being taken over the odd primes p, with (-a/p) the Legendre Symbol. 
We gave in [1] a heuristic argument in support of (1), a method of computing the 
ha , and supporting empirical data for the six cases a = 1, :i:2, ?t3, and 4. 

Subsequently the primes were also counted for six other cases, namely a = 

?5, :+6, ?7, and since such data are not available elsewhere it seems desirable to 
record them in a brief note. In Tables 1, 2, and 3 we show summaries for N = 
10,000 (10,000) 180,000 in the same format as the tables in [1]. 

While accurate values of ha in these six cases had not been computed, it was at 
once apparent that (1) is at least roughly correct for these values of a also. Quite 
recently [2] tables of La(S) for a = i6 have been computed by J. W. Wrench, 
Jr., and, on the basis of these, one finds 

h6= 0.71304162 
(3) 

h(6 = 1.03575587. 

These are in good agreement with the empirical ratios in Table 2. Equally accurate 
constants for a = ?+5 and i7 are more difficult to compute, and are not yet avail- 
ahle. 

We may note the following: 
1. Of the twelve forms, n2 + a, that we have investigated, n2 + 7 has the most 

primes. Its (empirical) h7, equal to 1.98, indicates that numbers of this form are 
primes nearly twice as often as numbers of the same magnitude chosen at random. 
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